COURSE 2- RINGS

LECTURE 1

Example: (0) is a Maximal ideal of R.
Example: ($\left.(0),+_{12}, .12\right)$ is a maximal ideal of the ring $\left(Z_{17},+_{17}, .17\right)$.
Q: find all Maximal ideal of Z_{12}
Solution: above its (Pe.4)

Remark: In general Z , we have (p) Maximal ideal in Z where p is a prime number.

Theorem: In the ring $(Z,+,),.((p),+,$.$) is a maximal ideal \Leftrightarrow \mathrm{p}$ is a prime number.

Proof:
\Rightarrow suppose that (P) is a maximal
ideal of $(Z,+,$.$) T.P: \mathrm{P}$ is a
prime number??
Let P is not prime number
$\therefore P=k_{1} . k_{2} ; 1<k_{1}$
$<P, 1<k_{2}<P \because$
$k_{1}<P \Rightarrow(P) \subset$
$\left(k_{1}\right) \rightarrow C!$
$\because k_{2}<P \Rightarrow(P) \subset\left(k_{1}\right) \rightarrow C!$
$\therefore \mathrm{P}$ is a prime number
\Leftarrow We have P
is a prime
number. T.P:
(P) is a
Maximal ideal?
Since P is a prime number, then all the ideal are (2) , (3) ,(5),(7), (11), ...
$0 \subset(4)$
$\subset(2) \rightarrow$
Maxima
$l 0 \subset$
$(6) \subset$
$(3) \rightarrow$
Maxima
l
$0 \subset(10) \subset(5) \rightarrow$ Maximal

Theorem: Let R be a comm. Ring with 1 . Every proper ideal contains in maximal ideal.

Proof:
Let I ideal of $R \ni I \neq R$
$A=\{J: I \subseteq J$ and J ideale of $R\}$
$A \neq \emptyset$ Choose $I \subset J_{1} \subset J_{2} \subset \cdots$
\therefore By (Zorn's Lemma); J is maximal

LECTURE 2

Theorem: Let $(I,+,$.$) be only Maximal ideal of R. then there only 1,0$ are idempotent elements

Proof:
Let $x \in R \ni x \neq 1, \neq 0$
If $x^{2}=x \Rightarrow x^{2}=x$

$$
\begin{aligned}
& x^{2}-x=0 \\
& x(x-1)=0 \\
& x=0 \text { or } x=1 \rightarrow C!
\end{aligned}
$$

OR
Let x any ideal
And x-1 another ideal
$x \notin$ Maximal
$(x) \subset I$ and $(x-1) \subset I$
From definition first conditional of ideal

$$
x-x+1=1 \in I \rightarrow I=R \rightarrow C!
$$

Theorem: If $(I,+,$.$) Is an ideal of comm. Ring with 1(R,+,$.$) , then I$ is a Maximal ideal \Leftrightarrow
R
$(,+,$.$) Is a field.$
I
Proof:
\Rightarrow Let I be a

Maximal ideal
of R T.P: ${ }^{R}$,
$+,$.$) Is a$
field??

$$
I
$$

T.P: ${ }^{R}$ comm. rang with 1 and every element non zero has inverse I

Since: R is comm. $\Rightarrow \underset{I}{R}$ is comm.
R has $1 \underset{I}{\Rightarrow}$ has $1+I$
Let $I=0+I \neq a+I \in_{R_{-}}$
$a+I \neq \emptyset \Rightarrow a \notin I$
\because I Maximal $\Rightarrow(a)+I \in R$
$1 \in R \Rightarrow 1 \in(a)+I$
$\Rightarrow 1=r(a)+i ; i \in I, r \in R$
$\Rightarrow 1=1-r a$
$\because i \in I \Rightarrow 1-r a \in I \Rightarrow 1+I \in r a+I=$
$(r+I) .(a+I) \Rightarrow(a+I)^{-1}=r+I \Rightarrow{ }^{R}$
field.
$\Leftarrow \underset{I}{\operatorname{Let}}\left({ }_{I},+,.\right)$ Be a field
T.P: I is a Maximal ideal of R??

Suppose that J is an ideal
of $\mathrm{R} \ni I \subset J \subseteq R$ T.P: $J=$
R??
$\because I \subset J \Rightarrow \exists a \in J, a \notin I$

LECTURE 3

$$
\begin{aligned}
& \Rightarrow a+I \neq I \Longrightarrow a+I \neq 0+I \\
& \because_{I}^{R} \\
& \exists b+I \in_{-}^{R} f_{I}^{R}(a+I)(b+I)=1+I \\
& \Rightarrow 1-a . b \in J \subset I \subset J \\
& \because a \in J, b \in R \Longrightarrow a . b \in J \\
& \Rightarrow 1 \in J \Longrightarrow J=R \quad \text { why?? } \\
& \therefore \text { I is a maximal of } \mathrm{R}
\end{aligned}
$$

Def: Let R be a ring (commutative with 1). An ideal I is called prime if:-

$$
\text { a. } b \in I \rightarrow \text { either } a \in I \text { or } b \in I ; \forall a, b \in R
$$

Ex: Let $(Z,+$,
.) be a ring. Then (P) is prime ideal such that P is a prime number.
$(5)=\{\ldots,-10,-5,0,5,10, \ldots\}$
Is a prime ideal
$(3)=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}$
Is a prime ideal
Remark: $(Z,+,$.$) is a prime ideal$

$$
(\{0\},+, .) \text { is a prime ideal In general }
$$

Ex: $\left(Z_{14},+_{14}, .14\right)$ is a ring but $\left(\{0\},+_{14}, .14\right)$ is not prime ideal because $2,7 \in Z_{14}$
$2.147=0$.But $2 \notin$
$\{0\}$ and $7 \notin\{0\}$
Now:
First find all ideals

$$
\begin{aligned}
& 2(7)=14 \\
& I_{2}=(2)=\{0,2,4,6,8,10,12\} \\
& I_{2}=(7)=\{0,7\}
\end{aligned}
$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
2	0	2	4	6	8	10	12	0	2	4	6	8	10	12
3	0	3	6	9	12	1	4	7	10	13	2	5	8	11
4	0	4	8	12	2	6	10	0	4	8	12	2	6	10
5	0	5	10	1	6	11	2	7	12	3	8	13	4	9
6	0	6	12	4	10	2	8	0	6	12	4	10	2	8
7	0	7	0	7	0	7	0	7	0	7	0	7	0	7
8	0	8	2	10	4	12	6	0	8	2	10	4	12	6
9	0	9	4	13	8	3	12	7	2	11	6	1	10	5
10	0	10	6	2	12	8	4	0	10	6	2	12	8	4
11	0	11	8	5	2	13	10	7	4	1	12	9	6	3
12	0	12	10	8	6	4	2	0	12	10	8	6	4	2
13	0	13	12	11	10	9	8	7	6	5	4	3	2	1

$1.143=3 \notin(2)$
Then there is not prime ideal in Z_{14}

Q: Let R be a ring (comm. with 1). Then R is an integral domain \Leftrightarrow $\{0\}$ is prime Solution:
\Rightarrow Let R be an integral domain.
$\therefore a . b=$
$0 \rightarrow a=$
0 or $b=$
$0 \therefore\{0\}$
prime.
Why?
\Leftarrow Let $\{0\}$ is prime
$\therefore a . b=0 \rightarrow a . b \in\{0\} \rightarrow a \in\{0\}$ or $b \in\{0\} \quad \forall a, b \in R$

$\therefore \mathrm{R}$ integral domain.

LECTURE 4

Theorem: Let $(I,+,$.$) Be a prime ideal of a comm. ring \mathrm{R}$ with 1 . Then the quotient ring $(\mathrm{R} / \mathrm{I})$ is integral domain if and only if $(I,+,$.$) Is a$ prime ideal.
Proof: \Rightarrow
T.P: I is a prime ideal ??

Let $a, b \in R \ni a . b \in I$.
We must prove that $a \in I$ or $b \in I$??
$\because a . b \in I \rightarrow a . b+I=I(a+I)(b+I)=I=0+I$.
But ${ }^{R}$ integral domain $\rightarrow R^{R}$ has no zero divisors
$\rightarrow a+I=I$ or $b+I=I$. Why ??
$\rightarrow a \in I \quad$ or $\quad b \in I$
$\rightarrow I ? ?$
\Leftarrow
Since R comm. \rightarrow^{R} comm. Since R with $1 \rightarrow^{R}$ with $1+I$. We must prove ${ }^{R}$ has no zero divisors.

I
Let $a+I, b+I \in R_{-}-\ni a, b \in R$
$(a+I)(b+I)=0+I=I$
(a.b) $+I=I \rightarrow a . b \in I$

But I prime ideal \rightarrow either $a \in I$ or $b \in I$
If: $a \in I \rightarrow a+I=I \rightarrow a+I=0+I$
Or: $b \in I \rightarrow b+I=I \rightarrow b+I=0+I$
$\rightarrow R$ has no zero divisor $\rightarrow R$ integral domain
Corollary: Every maximal ideal is prime ideal.
Proof:
Suppose that A is a
maximal ideal of R
T.P: A is a prime
ideal ??
Suppose $x . y \in A \forall x, y \in A ? ?$
If $x \notin A$:-
Since A maximal , $x \notin A \rightarrow A+(x)=R$
But $1 \in R \rightarrow 1 \in A+(x)$
$\rightarrow 1=a+r x, r \in R, a \in A$
$\therefore y=a y+y(r x)$

$$
=a y+r x y
$$

But $y \in R ; a \in A \rightarrow a y \in A$
But $r \in R ; x, y \in A \rightarrow r(x y) \in A$
$\rightarrow a y+r(x y) \in A \rightarrow y \in A \rightarrow A$ prime ideal

LECTURE 5

Def: We say R principal ideal ring (P.I.R) if every if every ideal of R is principal (it is generated by one element)

Ex: (2) is principle in Z
Ex: In Z every ideal is principal. $(a)=\{r . a: r \in R\}: 1$

Remark: Z is a P.I.R

Def: if R integral domain and every ideal of R is principal then R is called principal integral domain (P.I.D)

Theorem: Let R be a P.I.D. every non trivial ideal A is prime $\Leftrightarrow A$ is maximal

LECTURE 6

Remarks:

1. If R is P.I.D, then every non trivial ideal I is prime \Leftrightarrow is maximal
2. In $(Z,+,$.$) Every non trivial ideal I is maximal \Leftrightarrow$ I prime
3. If R is P.I.D, then the ideal $((a),+,$.$) is prime (maximal) in R \Leftrightarrow$ a prime number 4. ($Z,+$, .) Is P.I.D (By (3))

Def: Let R be a ring. Then the radical of $\mathrm{R}(\operatorname{Rad}(\mathrm{R}))$ defined by:

$$
\operatorname{Rad}(R)=\cap\{M: M \text { is Maximal ideal of } R\}
$$

$\square \operatorname{Rad}(R) \neq \emptyset$
$\square \operatorname{Rad}(R) \subseteq R$

Ans: $\operatorname{Rad}(Z)=\cap\{$ all Maximal ideals $\} \quad \ni(P)$ prime
$\therefore(2) \cap(3) \cap(5) \cap(7) \cap(11) \cap(13) \cap$

Q: find $\operatorname{Rad}\left(Z_{12}\right)$
Solution:
We must find all maximal ideals
Where $12=(2)(6)=(3)(4)=(1)(12)$
$I_{1}=(2)=\{0,2,4,6,8,10\}$
$I_{2}=(3)=\{0,3,6,9\}$
$I_{3}=(4)=\{0,4,8\}$
$I_{4}=(6)=\{0,6\}$
I_{4} and I_{3} are not maximal ideals because $\subset I_{1}$. But I_{1} and I_{2} are both maximal ideal because there not ideal contains them

Then $\operatorname{Rad}\left(Z_{12}\right)=I_{1} \cap I_{2}=\{0,2,4,6,8,10\} \cap\{0,3,6,9\}=\{0,6\}$

Def: We say the ring R is semi simple if $\operatorname{Rad}(R)=0$
Def: Let I be an ideal of R . Then $\sqrt{I}=\left\{r \in R ; r^{n} \in\right.$
$\left.I, n \in Z^{+}\right\}$Remark:
$1 . \sqrt{I} \subseteq R$
2. $\sqrt{I} \neq \emptyset$ why?

LECTURE 7

Thereon: Let I be an ideal of R . Then if J an ideal of $R \Rightarrow \sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$. Proof:

Suppose that $x \in \sqrt{I \cap} J$

$$
\begin{aligned}
& \therefore x^{n} \\
& \in \quad \cap J ; n \in Z^{+} \\
& \therefore \underset{y^{n} \in I, y^{m} J,}{\wedge} \in x^{n} \quad I \quad x \quad J \quad n, m \in Z^{+} \\
& y^{n} . y^{m} \in_{I}, \quad \therefore x \in \sqrt{I} \cap x \in \sqrt{J} \quad \text { because } y^{n} \in I, y^{m} \in \\
& R \quad \therefore \sqrt{I \cap J} \subseteq \sqrt{I} \cap \sqrt{J} \\
& \therefore y^{n+m} \in I \quad \text { Suppose } y \in \sqrt{I} \cap \sqrt{J} \\
& \therefore y^{k} \in I \quad y \in \sqrt{y}, y \in \sqrt{J} \\
& \text { Also, } y^{n} . y^{m} \in J \text { because } y^{m} \in J, y^{n} \in R \\
& \therefore y^{n+m} \in J \rightarrow y^{k} \in J \\
& \therefore y^{k} \in \wedge \quad \in y^{k} \quad J \\
& \therefore y^{k} \in \quad \cap I J \\
& \therefore y \in \sqrt{I \cap} J \\
& \therefore \sqrt{I} \cap \sqrt{J} \subseteq \sqrt{I \cap} \\
& \text { J } \\
& \therefore \sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}
\end{aligned}
$$

Def:
Let $f: R_{1} \rightarrow R_{2}$ be a function we
say f

$$
\begin{aligned}
& f(a+b)=f(a)+{ }_{2} f(b) \text { is ring homomorphism if } \\
& f(a . b)=f(a) \cdot 2 f(b)
\end{aligned}
$$

1.
2.

Example: $f: R_{1} \rightarrow R_{2} \ni f(a)=\overline{0}, a \in R$
Solution:

$$
\begin{aligned}
& f(a+b)=\overline{0}=\overline{0}+{ }_{2} \overline{0}=f(a)+{ }_{2} f(b) \\
& f(a . b)=\overline{0}=\overline{0} \cdot{ }_{2} \overline{0}=f(a) \cdot{ }_{2} f(b)
\end{aligned}
$$

$\therefore \mathrm{f}$ is homeomorphism.
Example: $f: Z \rightarrow Z_{e} \ni f(a)=2 a$
Solution:

$$
\begin{aligned}
f(a+b)= & 2(a+b)=2 a+2 b \\
& =f(a)+f(b)
\end{aligned}
$$

LECTURE 8

$$
\neq f(a . b)=2(a b)
$$

\therefore fisn't homo.
Theorem: Let $f: R_{1} \rightarrow R_{2}$ be a ring homo. then (1) $f(0)=0_{2} \ni 0_{2}$ identity of R_{2}
Proof:

$$
\begin{gathered}
a+0=0+a=a \forall a \in R \\
\therefore f(a+0)=f(0+a)=f(a) \\
\therefore f(a)+{ }_{2} f(0)=f(0)+{ }_{2} f(a)=f(a)(\mathrm{f} \text { homo. })
\end{gathered}
$$

$\therefore f(0)$ is identity in $R 2$.
But 0_{2} is identity in $R 2$ (unique)

$$
\therefore f(0)=0_{2}
$$

Def: Let $f: F_{1} \rightarrow F_{2}$ be a function. Then f is filed homo. if

1. $f(a+b)=f(a)+{ }_{2} f(b)$
2. $f(a . b)=f(a) .2 f(b)$

Def: Let $f: R_{1} \rightarrow R_{2}$ be a ring homo. then Kernel of f define by.

$$
\operatorname{Ker}(f)=\left\{a \in R: f(a)=0_{2}\right\}
$$

Remark:
1.
$\operatorname{Ker}(f) \neq \emptyset$

Example: $f: R_{1} \rightarrow R_{2} \ni f(a)=0_{2}, a \in R$.

$$
\begin{aligned}
\operatorname{Ker}(f) & =\left\{a \in R: f(a)=0_{2}\right\} \\
& =\{a: a \in R\}=R
\end{aligned}
$$

Example: $f: R_{1} \rightarrow R_{2} \ni f(a)=a$

$$
\begin{aligned}
\operatorname{Ker}(f) & =\{a \in R: f(a)=0\} \\
& =\{
\end{aligned}
$$

Def: A field F is called prime filed if it has no
proper subfield. Example: Q, Z_{3}, Z_{5}
Remarks:

1. Any Quotient field of integral domain is a prime field
2. Any prime field is a quotient ideal.

Example: Let F be a field a field. Then 0 is maximal ideal and F is a minimal ideal

Example: $(Z,+,$.
Z_{e} maximal
(1) \supset (2)
(1) \supset)

Theorem: Let $f: R_{1} \rightarrow R_{2}$ be a ring homo. Then $\operatorname{Ker}(\mathrm{f})$ is an ideal in R.

Proof:

Ker $\neq \emptyset$
Let $x, y \in \operatorname{Ker}(f)$
$\Rightarrow f(x)=0_{2}, f(y)=0_{2}$
T.P: $x-y \in \operatorname{Ker}(f)$
T.P: $f(x-y)=0_{2}$
$f(x-y)=f(x)-f(y)=0_{2}-0_{2}=0$
Let $x \in \operatorname{Ker}(f), r \in R$
T.P: $r x, x r \in \operatorname{Ker}(f)$
$f(r x)=f(r) \cdot f(x)=f(r) \cdot 0_{2}=0_{2}$
$\Rightarrow r x \in \operatorname{Ker}(f)$
$x r \in \operatorname{Ker}(f)$
$\therefore \operatorname{Ker}(f)$ is ideal in R.
Theorem: if $f: R_{1} \rightarrow R_{2}$ is a ring home. Then f is one to one $\Leftrightarrow \operatorname{Ker}(f)=0$
Proof:
Suppose f is one to one
T.P $\operatorname{Kre}(f)=\{0\}$

Let $a \in \operatorname{Ker}(f)$
$\Rightarrow f(a)=0_{2}$
f
(a) $=f\left(0_{2}\right)$
$\therefore a=0 \rightarrow \operatorname{Ker}(f)=\{0\}$

LECTURE 9

\Longleftarrow Suppose $\operatorname{Ker}(f)=0$
T.P: f is $1-1$

Let $a, b \in R_{1} \ni f(a)=f(b)$
T.P: $a=b$
$f(a)=f(b)$
$f(a)-f(b)=0$
$f(a-b)=0 \rightarrow a-b \in \operatorname{Ker}(f)$
$\Rightarrow a=b$

Corollary: The unique homo. otherwise, zero homo. is from $Z \rightarrow Z$ and it is identity ho $(f(n)=n, n \in Z)$

Proof:
Let f be a non-zero
homo. from $Z \rightarrow Z$
T.P: fis identity
homo.

$$
(f(n)=n, n \in Z)
$$

Let $n \in{ }^{+} Z$

$$
n=1+1+1+1+\cdots+1
$$

$\therefore f(1)=f(1+1+\ldots+1)$
$=f(1)+f(1)+\cdots+f(1)=n . f(1)$

If n is negative $(n<0)$
$\Rightarrow-n \in Z^{+} \Rightarrow f^{(n)}=f(-(-n))=-f(-n)$
$=-(-n) f(1)=n \cdot f(1)$

$$
\text { If } n=0 \rightarrow f(n)=f(0)=0=0 f(1)
$$

$$
\begin{gathered}
\therefore f(n)=n f(1), n \in \\
Z f(1)=1 \rightarrow f(n)=n \Rightarrow f \\
\\
\\
\text { unique homo. }
\end{gathered}
$$

Def: Let $(I,+,$.$) Be an ideal of (R,+,$.$) . We define the set \operatorname{ann}(I)$ by:

$$
\operatorname{ann}(I)=\{r \in R ; r . a=0, \forall a \in I\}
$$

Q: prove that $(\operatorname{ann}(I),+,$.$) Is an ideal of (R,+,$.
Proof:
Let:

$$
\begin{aligned}
& a=r_{1} x \Rightarrow a=0 \\
& b=r_{2} y \Rightarrow b=0 \\
& 1-a-b \Rightarrow r_{1} x-r_{2} y=0-0=0 \\
& 2-r a \Rightarrow r 0=0 . \forall r \in R
\end{aligned}
$$

Def: Let R be a ring. Then R is called Boolean ring if R has identity and $a^{2}=a, \forall a \in R$. Ex: $\left(Z_{2},+2, .2\right)$ is a Boolean ring because $Z_{2}=$ $\{0,1\}$
$\Rightarrow 0^{2}=0,1^{2}=1$

Ex: $(P(X), \Delta, \cap)$ is a Boolean ring because $\forall A \in P(X) \Rightarrow A$ ${ }^{2}=A \cap A=A$

Ex: $R=\left\{f: f: X \rightarrow Z_{2}\right\}$ and we define

$$
\begin{aligned}
& (f+g)(x)=f(x)+_{2} g(x) \\
& (f g)=f(x) \cdot 2 g(x) \quad \forall x \in X
\end{aligned}
$$

$\therefore \mathrm{R}$ is a commutive ring with 1 and satisfy:

$$
f(x)=0 \text { or } f(1)=1, f \in R
$$

$\therefore f^{2}=f$

$$
\text { If } f(x)=0 \Rightarrow f^{2}(x)=f(x) \cdot 2 f(x)=0 \cdot{ }_{2} 0=f(x)
$$

$$
\text { If } f(x)=1 \Longrightarrow f^{2}(x)=f(x) \cdot 2 f(x)=1 \cdot 21=f(x)
$$

$\therefore \mathrm{R}$ is a Boolean ring

LECTURE 10

Theorem: Every Boolean ring is commutative and has Char $=2$
Proof:
Suppose that R is a ring
and $a^{2}=a \quad \forall a \in R$ Let a,
$b \in R \Longrightarrow a+b \in R$. why?

$$
\begin{aligned}
& \Rightarrow a^{2}=a, b^{2}=b,(a+b)^{2}=a+b \\
& \rightarrow(a+b)^{2}=a^{2}+b^{2}+a b+b a \\
& \rightarrow a+b=a^{2}+b^{2}+a b+b a \\
& =a+b+a b+ \\
& \quad b a \\
& \rightarrow a b+b a=0 \\
& \rightarrow a \cdot a+a \cdot a=0
\end{aligned}
$$

$$
a
$$

$$
2+a^{2}=0
$$

a

$$
+a=0
$$

$$
2 a=0 \quad \forall a \in R
$$

$$
\therefore \operatorname{Char}(\mathrm{R})=2
$$

Also, $a b+b a=0 \Rightarrow$
$a b+a b+b a=a b$

$$
\begin{aligned}
& 2 a b+b a=a b \\
& 0+b a=a b \\
& \Rightarrow \\
& a b \\
& = \\
& b a \\
& \forall a, \\
& b \in \\
& R: \therefore \\
& \text { R } \\
& \text { com } \\
& \text { m. }
\end{aligned}
$$

Theorem: If R is a Boolean ring and I an ideal (proper) of R, then I is a prime ideal \Leftrightarrow I is maximal ideal.

Proof:
Suppose
that I is
prime ideal
T.P: I is
maximal??
Assume that I ideal
of R $\ni \quad \subset \quad \subseteq I J R$
T.P: $J=R ? ?$

$$
\because \subset I J \rightarrow \exists \quad \in \quad a J, a \notin I
$$

R Boolean
$\therefore a^{2}=a$
$a(1-a)=0 \in I$
\because I prime $a \notin I$
$\therefore 1-a \in J$
$\because \quad \subset I J \Rightarrow 1-a \in J$
$\rightarrow(1-a)+a \in J \rightarrow 1 \in J \rightarrow J=R$
\therefore I maximal
\Leftarrow
Suppose that I is maximal ideal
T.P: I is prime ideal

By "Every maximal ideal is prime ideal"
\therefore I is prime ideal

LECTURE 11

Theorem: Let be a proper ideal of Boolean ring R. Then I is a maximal $\Leftrightarrow_{-} Z^{2}$

Proof:
R
Since R is a Boolean ring \rightarrow _ is a Boolean ring I

Since R is a Boolean ring
$\rightarrow \mathrm{R}$ is a commutative with 1 R
\rightarrow _ is a commutative with 1 I
T.P:
$(0+I)^{2}=a+I \quad, \forall a+$

$$
\begin{aligned}
& (a+I)^{2} \in \\
& \quad \begin{array}{l}
R \\
\quad \\
\quad \\
\\
(a+I)^{2}=(a+I)(a+I)=a \cdot a+I=a^{2}+I \\
= \\
\\
\rightarrow+I \quad\left(a^{2}=a\right) \\
\rightarrow \\
\\
\\
\\
\\
\\
\text { Boolean ring }
\end{array}
\end{aligned}
$$

The Boolean ring R is a filled $\Leftrightarrow R \cong Z_{2}$

Proof:

Let R be a Boolean ring.

$$
\begin{aligned}
\therefore \forall & \in \quad a \quad R \rightarrow a=a .1 \\
& =a \cdot\left(a \cdot a^{-1}\right) \\
& =(a \cdot a) a^{-1} \\
& =a^{2} \cdot a^{-1} \\
& =a \cdot a^{-1}=1
\end{aligned}
$$

$\because R=\{0,1\}$
$\Rightarrow R$
$\cong Z_{2}$
R
But I maximal \Leftrightarrow field
I
R
I maximal \Leftrightarrow Boolean ring
I
R
I maximal $\Leftrightarrow \cong Z_{2}$
I
Theorem: Every Boolean ring R is semi simple
Proof:
Let R be a Boolean ring
$\therefore \mathrm{R}$ has identity
element.
Why?? and a^{2}
$=a \forall a \in R$.
T. P. R is a semi simple ring
T. P.
$\therefore \exists$ homomorphism
from R to Z_{2}
$\ni \mathrm{f}(\mathrm{a})=1$
$\therefore \operatorname{Ker}(\mathrm{f})$ ideal
(proper) in R
$\therefore \exists$ maximal
ideal M in R э
$\operatorname{Ker}(\mathrm{f}) \subseteq \mathrm{M}$
But1-a $\in \operatorname{Ker}(f)$
$\therefore 1-\mathrm{a} \in \mathrm{M}(\operatorname{Ker}(\mathrm{f}) \subseteq$
M)
Since a $\in M$ (because a $\in \operatorname{Rad}(R)$)
$\operatorname{Rad}(\mathrm{R})=\bigcap\{$ Maximal ideal $\}$
$\rightarrow 1-a+a \in M$
$\rightarrow 1 \in M \rightarrow M=R \quad C!$
Because M Maximal in R
$\therefore \operatorname{Rad}(\mathrm{R})=\{0\}$
R semi simple ring

Definition: We define Boolean algebra is a Mathematical system (B, \vee, \wedge) such that \vee, \wedge two binary operation on B and $B \neq \varnothing$ and satisfy the following

LECTURE 12

- V, Λ commutative on B .

$$
\text { i.e.: } \mathrm{a} \wedge \mathrm{~b}=\mathrm{b} \wedge \mathrm{a}, \mathrm{a} \vee \mathrm{~b}=\mathrm{b} \vee \mathrm{a} \forall a, b \in B
$$

- V, \wedge distributive with them ; others ;
$a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$
$a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$
- $\exists 1,0$ identity elements with \vee, \wedge
$\ni a \bigvee 0=a \& a$
$\wedge 1=a \forall a \in$
B For each
element a
$\in B \exists a^{\prime} \in B$
$\ni a \vee a^{\prime}=1 \& a \wedge a^{\prime}=0$
(a^{\prime} is called complement of a)

Example: $(\mathrm{P}(\mathrm{X}), \mathrm{U}, \mathrm{\cap}), x \neq 0$ is a Boolean algebra.
$0=\emptyset, 1=x$

Example: Let B be a set of Positive integer numbers which represent divisors of $10 B=\{1,2,5,10\}$

We
define
V, ^
on B by:
$\forall \mathrm{a}, \mathrm{b} \in \mathrm{B}$
\rightarrow
g.c.d $(a, b)=a \wedge b$
L.c. $m(a, b)=a \vee b$. Then
(B, V, \wedge) is a Boolean algebra

V	1	2	5	10
1	1	2	5	10
2	2	2	10	10
5	5	10	5	10
10	10	10	10	10

Λ	1	2	5	10
1	1	1	1	1
2	1	2	1	2
5	1	1	5	5
10	1	2	5	10

identity
element of
V is 1
identity
element of
Λ is 10
$1^{\prime}=10,2^{\prime}=5,5^{\prime}=2,10^{\prime}=1$

