COURSE 2- RINGS

LECTURE 1

Example: (0) is a Maximal ideal of R.

Example: ((0), $+_{12}$, $._{12}$) is a maximal ideal of the ring (Z_{17} , $+_{17}$, $._{17}$).

Q: find all Maximal ideal of Z_{12}

Solution: above its (**Pe.4**)

Remark: In general Z, we have (p) Maximal ideal in Z where p is a prime number.

Theorem: In the ring (Z, +, .), ((p), +, .) is a maximal ideal \Leftrightarrow p is a prime number.

Proof:

⇒ suppose that (P) is a maximal ideal of (Z, +, .) T.P: P is a prime number?? Let P is not prime number $\therefore P = k_1. k_2; 1 < k_1$ $< P, 1 < k_2 < P ∵$ $k_1 < P \Rightarrow (P) ⊂$ $(k_1) → C!$ $\therefore R = p = (P) ⊂ (k_1) → C!$ $\therefore P = k_1 + (k_1) = k_1 + (k_1) + (k_1) = k_1 + (k_1) + (k_1) = k_1 + (k_1) + (k_1) + (k_1) + (k_1) = k_1 + (k_1) + (k_1) + (k_1) + (k_1) = k_1 + (k_1) + (k_1) + (k_1) + (k_1) + (k_1) = k_1 + (k_1) + (k_1)$ \Leftarrow We have P

is a prime

number. T.P:

(P) is a

Maximal ideal?

Since P is a prime number, then all the ideal are (2), (3),(5),(7), (11), ...

$$0 \subset (4)$$

$$\subset (2) \rightarrow$$
Maxima
$$l \ 0 \subset$$

$$(6) \subset$$

$$(3) \rightarrow$$
Maxima
$$l$$

$$0 \subset (10) \subset (5) \rightarrow$$
Maximal

Theorem: Let R be a comm. Ring with 1. Every proper ideal contains in maximal ideal.

Proof:

Let I ideal of $R \ni I \neq R$ $A = \{J : I \subseteq J \text{ and } J \text{ ideale of } R\}$ $A \neq \emptyset$ Choose $I \subset J_1 \subset J_2 \subset \cdots$ \therefore By (Zorn's Lemma); J is maximal

Theorem: Let (I, +, .) be only Maximal ideal of R. then there only 1, 0 are idempotent elements

Proof:

```
Let x \in R \ni x \neq 1, \neq 0

If x^2 = x \Longrightarrow x^2 = x

x^2 - x = 0

x(x - 1) = 0

x = 0 \text{ or } x = 1 \rightarrow C!
```

OR

Let x any ideal And x-1 another ideal $x \notin Maximal$ $(x) \subset I$ and $(x - 1) \subset I$ From definition first conditional of ideal

 $x - x + 1 = 1 \in I \rightarrow I = R \rightarrow C!$

Theorem: If (I, +, .) Is an ideal of comm. Ring with 1 (R, +, .), then *I* is a Maximal ideal \Leftrightarrow R(, +, .) Is a field.

Proof:

⇒ Let I be a Maximal ideal of R T.P: $(^{R},$

+,.) Is a field?? I T.P: R comm. rang with 1 and every element non zero has inverse Ι Since: R is comm. \Rightarrow ^{*R*} is comm. Ι R has $1 \Longrightarrow_{I}^{R}$ has 1 + ILet $I = 0 + I \neq a + I \in \mathbb{R}_{-}$ $a + I \neq \emptyset \Rightarrow a \notin I$ $: I \text{ Maximal} \Rightarrow (a) + I \in R$ $1 \in R \Longrightarrow 1 \in (a) + I$ $\Rightarrow 1 = r(a) + i; i \in I, r \in R$ $\Rightarrow 1 = 1 - ra$ $:: i \in I \Longrightarrow 1 - ra \in I \Longrightarrow 1 + I \in ra + I =$ $(r+I).(a+I) \implies (a+I)^{-1} = r+I \implies R$ field. Ι $\leftarrow \text{Let}\left(\begin{smallmatrix} R\\ I \end{smallmatrix}, +, .\right) \text{Be a field}$ T.P: I is a Maximal ideal of R?? Suppose that J is an ideal of $R \ni I \subset J \subseteq R$ T.P: J =*R*?? $:: I \subset J \Longrightarrow \exists a \in J, a \notin I$

$$\Rightarrow a + I \neq I \Rightarrow a + I \neq 0 + I$$

$$\stackrel{R}{:} \inf_{I} \text{ field}$$

$$\exists b + I \in \bigwedge_{I} (a + I)(b + I) = 1 + I$$

$$\Rightarrow 1 - a. \ b \in J \subset I \subset J$$

$$\therefore a \in J, \ b \in R \Rightarrow a. \ b \in J$$

$$\Rightarrow 1 \in J \Rightarrow J = R \quad \text{why??}$$

$$\therefore I \text{ is a maximal of } R$$

Def: Let R be a ring (commutative with 1). An ideal I is called prime if:-

$$a. b \in I \rightarrow either \ a \in I \ or \ b \in I ; \forall a, b \in R$$

Ex: Let (*Z*, +,

.) be a ring. Then (P) is prime ideal such that P is a prime number.

 $(5) = \{ \dots, -10, -5, 0, 5, 10, \dots \}$

Is a prime ideal

$$(3) = \{ \dots, -9, -6, -3, 0, 3, 6, 9, \dots \}$$

Is a prime ideal

Remark: (Z, +, .) is a prime ideal

 $(\{0\},+,.)$ is a prime ideal **In general**

Ex: $(Z_{14}, +_{14}, ._{14})$ is a ring but $(\{0\}, +_{14}, ._{14})$ is not prime ideal because 2,7 $\in Z_{14}$ 2 .14 7 = 0 .But 2 ∉

 $\{0\}$ and $7 \notin \{0\}$

Now:

First find all ideals

$$2(7) = 14 \qquad 2 | 14 \\ I_2 = (2) = \{0, 2, 4, 6, 8, 10, 12\} \qquad 7 | 7 \\ 1$$

 $I_2 = (7) = \{0, 7\}$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
2	0	2	4	6	8	10	12	0	2	4	6	8	10	12
3	0	3	6	9	12	1	4	7	10	13	2	5	8	11
4	0	4	8	12	2	6	10	0	4	8	12	2	6	10
5	0	5	10	1	6	11	2	7	12	3	8	13	4	9
6	0	6	12	4	10	2	8	0	6	12	4	10	2	8
7	0	7	0	7	0	7	0	7	0	7	0	7	0	7
8	0	8	2	10	4	12	6	0	8	2	10	4	12	6
9	0	9	4	13	8	3	12	7	2	11	6	1	10	5
10	0	10	6	2	12	8	4	0	10	6	2	12	8	4
11	0	11	8	5	2	13	10	7	4	1	12	9	6	3
12	0	12	10	8	6	4	2	0	12	10	8	6	4	2
13	0	13	12	11	10	9	8	7	6	5	4	3	2	1

 $1_{.14} 3 = 3 \notin (2)$

Then there is not prime ideal in Z_{14}

Q: Let R be a ring (comm. with1). Then R is an integral domain ⇔ {0} is prime Solution:

⇒ Let R be an integral domain. ∴ a. b = 0 → a = 0 or b = 0 ∴ {0} prime. Why? ⇐ Let {0} is prime ∴ a. b = 0 → a. b ∈ {0} → a ∈ {0} or b ∈ {0} ∀a, b ∈ R ↓ a=0 b=0

∴ R integral domain.

LECTURE 4

Theorem: Let (I, +, .) Be a prime ideal of a comm. ring R with 1. Then the quotient ring (R/I) is integral domain if and only if (I, +, .) Is a prime ideal.

Proof: \Rightarrow

T.P: I is a prime ideal ?? Let $a, b \in R \ni a. b \in I$. We must prove that $a \in I$ or $b \in I$?? $\therefore a. b \in I \rightarrow a. b + I = I (a + I)(b + I) = I = 0 + I$. But ^{*R*} integral domain \rightarrow ^{*R*} has no zero divisors

Ι

Ι

$$\rightarrow a + I = I \text{ or } b + I = I. \text{ Why } ??$$

$$\rightarrow a \in I \text{ or } b \in I$$

$$\rightarrow I??$$

$$\Leftarrow$$

Since R comm. $\rightarrow R$ comm. Since R with $1 \rightarrow R$ with $1 + I$. We

must prove ^{*R*} has no zero divisors. *I* Let a + I, $b + I \in {R \atop I} \ni a, b \in R$

$$(a+I)(b+I) = 0 + I = I$$

 $(a. b) + I = I \rightarrow a. b \in I$

But *I* prime ideal \rightarrow either $a \in I$ or $b \in I$

If:
$$a \in I \rightarrow a + I = I \rightarrow a + I = 0 + I$$

Or: $b \in I \rightarrow b + I = I \rightarrow b + I = 0 + I$

 $\rightarrow R$ has no zero divisor $\rightarrow R$ integral domain

Corollary: Every maximal ideal is prime ideal.

Proof:

Suppose that A is a maximal ideal of R T.P: A is a prime ideal ?? Suppose $x. y \in A \ \forall x, y \in A$?? If $x \notin A$:-Since A maximal , $x \notin A \rightarrow A + (x) = R$ But $1 \in R \rightarrow 1 \in A + (x)$ $\rightarrow 1 = a + rx$, $r \in R$, $a \in A$ $\therefore y = ay + y(rx)$

$$= ay + rxy$$

But $y \in R$; $a \in A \rightarrow ay \in A$
But $r \in R$; $x. y \in A \rightarrow r(xy) \in A$
 $\rightarrow ay + r(xy) \in A \rightarrow y \in A \rightarrow A$ prime ideal

Def: We say R principal ideal ring (P.I.R) if every if every ideal of R is principal (**it is generated by one element**)

Ex: (2) is principle in Z

Ex: In Z every ideal is principal. $(a) = \{r. a : r \in R\}$:1

Remark: Z is a P.I.R

Def: if R **integral domain** and every ideal of R is **principal** then R is called principal integral domain (**P.I.D**)

Theorem: Let R be a P.I.D. every non trivial ideal A is prime \Leftrightarrow A is maximal

LECTURE 6

Remarks:

- 1. If R is P.I.D, then every non trivial ideal I is prime \Leftrightarrow is maximal
- 2. In (*Z*, +, .) Every non trivial ideal I is maximal \Leftrightarrow I prime

3. If R is P.I.D, then the ideal ((a), +, .) is prime (maximal) in R \Leftrightarrow a prime number 4. (Z, +, .) Is P.I.D (By (3))

Def: Let R be a ring. Then the radical of R (Rad(R)) defined by:

 $Rad(R) = \cap \{M: M \text{ is Maximal ideal of } R\}$

 $\Box Rad(R) \neq \emptyset$ $\Box Rad(R) \subseteq R$ \Box

Ans: $Rad(Z) = \cap \{all \ Maximal \ ideals\} \in (P) \text{ prime}$ $\therefore (2) \cap (3) \cap (5) \cap (7) \cap (11) \cap (13) \cap$

...

```
Q: find Rad (Z_{12})
```

Solution:

We must find all maximal ideals

Where 12 = (2)(6) = (3)(4) = (1)(12) $I_1 = (2) = \{0, 2, 4, 6, 8, 10\}$ $I_2 = (3) = \{0, 3, 6, 9\}$ $I_3 = (4) = \{0, 4, 8\}$ $I_4 = (6) = \{0, 6\}$

 I_4 and I_3 are not maximal ideals because $\subset I_1$. But I_1 and I_2 are both maximal ideal because there not ideal contains them

Then $Rad(Z_{12}) = I_1 \cap I_2 = \{0, 2, 4, 6, 8, 10\} \cap \{0, 3, 6, 9\} = \{0, 6\}$

Def: We say the ring R is semi simple if Rad(R) = 0**Def:** Let I be an ideal of R. Then $\sqrt{I} = \{r \in R : r^n \in I\}$

I, $n \in Z^+$ } **Remark:** $1.\sqrt{I} \subseteq R$ $2.\sqrt{I} \neq \emptyset$ why?

Thereon: Let I be an ideal of R. Then if J an ideal of $R \Longrightarrow \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$. Proof:

Suppose that $x \in \sqrt{I \cap J}$ $\therefore x^n$ $\in \cap IJ; n \in Z^+$ $\therefore x^n \in x^n \quad I \quad x \quad J$ $n, m \in Z^+$ $y^n \cdot y^m \in I$, $\therefore x \in \sqrt{I} \cap x \in \sqrt{J}$ because $y^n \in I, y^m \in R$ $R \quad \therefore \sqrt{I \cap J} \subseteq \sqrt{I} \cap \sqrt{J}$ $\therefore y^{n+m} \in I$ Suppose $y \in \sqrt{I} \cap \sqrt{J}$ $\therefore y^k \in I$ $y \in \sqrt{y}, y \in \sqrt{J}$ Also, $y^n \cdot y^m \in J$ because $y^m \in J, y^n \in R$ $\therefore y^{n+m} \in J \rightarrow y^k \in J$ $\therefore y^k \in \cap IJ$ $\therefore y^k \in \cap IJ$ $\therefore \sqrt{I \cap J} \subseteq \sqrt{I \cap J}$ $\therefore \sqrt{I \cap J} = \sqrt{I \cap \sqrt{J}}$ Def: say f $f(a + b) = f(a) +_2 f(b)$ $f(a \cdot b) = f(a) \cdot_2 f(b)$ 1. 2. Let $f \colon R_1 \to R_2$ be a function we is ring homomorphism if

Example: $f : R_1 \rightarrow R_2 \ni f(a) = \overline{0}$, $a \in R$ Solution:

$$f(a+b) = \overline{0} = \overline{0} +_2 \overline{0} = f(a) +_2 f(b)$$
$$f(a \cdot b) = \overline{0} = \overline{0} \cdot_2 \overline{0} = f(a) \cdot_2 f(b)$$

 \therefore f is homeomorphism.

Example: $f: Z \to Z_e \ni f(a) = 2a$

Solution:

$$f(a+b) = 2(a+b) = 2a + 2b$$
$$= f(a) + f(b)$$

LECTURE 8

$$\neq f(a,b) = 2(ab)$$

: f isn't homo. Theorem: Let $f: R_1 \rightarrow R_2$ be a ring homo. then (1) $f(0) = 0_2 \ni 0_2$ identity of R_2 Proof:

 $a + 0 = 0 + a = a \forall a \in R$ $\therefore f(a + 0) = f(0 + a) = f(a)$ $\therefore f(a) +_2 f(0) = f(0) +_2 f(a) = f(a) \text{(f homo.)}$ $\therefore f(0) \text{ is identity in } R_2.$

But 0_2 is identity in $R_2(unique)$

 $\therefore f(0) = 0_2$

Def: Let $f: F_1 \rightarrow F_2$ be a function. Then f is filed homo. if

1.
$$f(a + b) = f(a) + {}_2f(b)$$

2. $f(a, b) = f(a) \cdot {}_2f(b)$

Def: Let $f: R_1 \rightarrow R_2$ be a ring homo. then Kernel of f define by. $Ker(f) = \{a \in R : f(a) = 0_2 \}$

Remark:

$$\begin{array}{l}1.\\Ker(f)\neq \emptyset\end{array}$$

Example:
$$f: R_1 \rightarrow R_2 \ni f(a) = 0_2$$
, $a \in R$.
 $Ker(f) = \{a \in R : f(a) = 0_2\}$
 $= \{a : a \in R\} = R$

Example:
$$f: R_1 \rightarrow R_2 \ni f(a) = a$$

 $Ker(f) = \{a \in R : f(a) = 0\}$
 $=\{$

Def: A field F is called prime filed if it has no

proper subfield. Example: Q , Z_3 , Z_5

Remarks:

- 1. Any Quotient field of integral domain is a prime field
- 2. Any prime field is a quotient ideal.

Example: Let F be a field a field. Then 0 is maximal ideal and F is a minimal ideal

Example: (Z, +, .)

 Z_e maximal

- $(1) \supset (2)$
- $(1)\supset I \supset (2)$

Theorem: Let $f: R_1 \rightarrow R_2$ be a ring homo. Then Ker(f) is an ideal in R.

Proof:

$$Ker \neq \emptyset$$

Let $x, y \in Ker(f)$
 $\Rightarrow f(x) = 0_2, f(y) = 0_2$
T.P: $x - y \in Ker(f)$
T.P: $f(x - y) = 0_2$
 $f(x - y) = f(x) - f(y) = 0_2 - 0_2 = 0$
Let $x \in Ker(f), r \in R$
T.P: $rx, xr \in Ker(f)$
 $f(rx) = f(r) \cdot f(x) = f(r) \cdot 0_2 = 0_2$
 $\Rightarrow rx \in Ker(f)$
 $xr \in Ker(f)$
 $xr \in Ker(f)$
 $: Ker(f)$ is ideal in R.
Theorem: if $f: R_1 \rightarrow R_2$ is a ring home. Then f is one to one $\Leftrightarrow Ker(f) = 0$

Suppose f is one to one
T.P
$$Kre(f) = \{0\}$$

Let $a \in Ker(f)$
 $\Rightarrow f(a) = 0_2$
f
 $(a) = f(0_2)$
 $\therefore a = 0 \rightarrow Ker(f) = \{0\}$

 $\Leftarrow \text{Suppose } Ker(f) = 0$ T.P: f is 1 -1 Let $a, b \in R_1 \ni f(a) = f(b)$ T.P: a = bf(a) = f(b)f(a) - f(b) = 0 $f(a - b) = 0 \rightarrow a - b \in Ker(f)$ $\Rightarrow a = b$

Corollary: The unique homo. otherwise, zero homo. is from $Z \rightarrow Z$ and it is identity ho $(f(n) = n, n \in Z)$

Proof:

Let f be a non-zero homo. from $Z \rightarrow Z$ T.P: f is identity homo. $(f(n) =_n, n \in Z)$ Let $n \in {}^+Z$ $n = 1 + 1 + 1 + 1 + \dots + 1$ $\therefore f(1) = f(1 + 1 + \dots + 1)$ $= f(1) + f(1) + \dots + f(1) = n \cdot f(1)$ If n is negative (n < 0) $\Rightarrow -n \in Z^+ \Rightarrow f(n) = f(-(-n)) = -f(-n)$ $= -(-n)f(1) = n \cdot f(1)$ If $n = 0 \rightarrow f(n) = f(0) = 0 = 0 f(1)$

$$\begin{array}{l} \therefore f(n) = nf(1), n \in \\ Z \\ \because f(1) = 1 \rightarrow f(n) = n \Longrightarrow f \\ \text{unique homo.} \end{array}$$

Def: Let (I, +, .) Be an ideal of (R, +, .). We define the set ann(I) by: $ann(I) = \{r \in R ; r. a = 0, \forall a \in I\}$ Q: prove that (ann(I), +, .) Is an ideal of (R, +, .)

Proof:

Let:

$$a = r_1 x \Longrightarrow a = 0$$

 $b = r_2 y \Longrightarrow b = 0$
 $1 - a - b \Longrightarrow r_1 x - r_2 y = 0 - 0 = 0$
 $2 - ra \Longrightarrow r0 = 0 \quad \forall r \in R$

Def: Let R be a ring. Then R is called Boolean ring if R has identity and $a^2 = a$, $\forall a \in R$. Ex: $(Z_2, +_2, ._2)$ is a Boolean ring because $Z_2 = \{0, 1\}$ $\Rightarrow 0^2 = 0, 1^2 = 1$

Ex:
$$(P(X), \Delta, \cap)$$
 is a Boolean ring because $\forall A \in P(X) \Rightarrow A$
 $P^2 = A \cap A = A$
Ex: $R = \{f: f: X \to Z_2\}$ and we define
 $(f + g)(x) = f(x) +_2 g(x)$
 $(fg) = f(x) \cdot_2 g(x) \quad \forall x \in X$
 \therefore R is a commutive ring with 1 and satisfy:
 $f(x) = 0 \text{ or } f(1) = 1 , f \in R$
 $\therefore f^2 = f$
If $f(x) = 0 \Rightarrow f^2(x) = f(x) \cdot_2 f(x) = 0 \cdot_2 0 = f(x)$

If
$$f(x) = 1 \Longrightarrow f^2(x) = f(x) \cdot f(x) = 1 \cdot f(x)$$

$$\therefore f^2 = f$$

∴ R is a Boolean ring

LECTURE 10

Theorem: Every Boolean ring is commutative and has Char = 2

Suppose that R is a ring
and
$$a^2 = a \quad \forall a \in R$$
 Let a ,
 $b \in R \Longrightarrow a + b \in R$. why?
 $\Rightarrow a^2 = a , b^2 = b , (a + b)^2 = a + b$
 $\Rightarrow (a + b)^2 = a^2 + b^2 + ab + ba$
 $\Rightarrow a + b = a^2 + b^2 + ab + ba$
 $= a + b + ab + ba$
 $\Rightarrow ab + ba = 0$
 $\Rightarrow a. a + a. a = 0$
 a
 $^2 + a^2 = 0$
 a
 $+ a = 0$
 $2a = 0 \quad \forall a \in R$
 \therefore Char(R) = 2
Also, $ab + ba = 0 \Longrightarrow$
 $ab + ab + ba = ab$

2ab + ba = ab
0 + ba = ab
\Rightarrow
ab
=
ba
∀a,
$b \in$
R :.
R
com
m.

Theorem: If R is a Boolean ring and I an ideal (proper) of R, then I is a prime ideal \Leftrightarrow I is maximal ideal.

Suppose	
that I is	
prime ideal	
T.P: I is	
maximal??	
Assume that I ideal	
of $R \ni \subset \subseteq I J R$	
T.P: $J = R$??	
$\because \ \Box I \ J \to \exists \in$	a J, a∉I

```
R Boolean

\therefore a^{2} = a
a(1 - a) = 0 \in I
\therefore I \text{ prime } a \notin I
\therefore 1 - a \in J
\therefore cI J \Longrightarrow 1 - a \in J
\rightarrow (1 - a) + a \in J \rightarrow 1 \in J \rightarrow J = R
\therefore I \text{ maximal}
\Leftarrow
Suppose that I is maximal ideal

T.P: I is prime ideal

By "Every maximal ideal is prime ideal"

\therefore I \text{ is prime ideal}
```

Theorem: Let be a proper ideal of Boolean ring R. Then I is a maximal $\Leftrightarrow \frac{2}{I} = \frac{2}{Z^2}$

```
R

Since R is a Boolean ring → _ is a Boolean ring

I

Since R is a Boolean ring

\rightarrow R is a commutative with 1

R

\rightarrow _{I} is a commutative with 1

I

T.P: {}^{R}0 + I)^{2} = a + I, \forall a + I \in -
```

$$(a + I)^{2} \in$$

$$R$$

$$-$$

$$I$$

$$(a + I)^{2} = (a + I)(a + I) = a \cdot a + I = a^{2} + I$$

$$= a + I \quad (a^{2} = a)$$

$$\rightarrow \frac{R}{I}$$
Boolean ring

The Boolean ring R is a filled $\Leftrightarrow R \cong Z_2$

Proof:

Let R be a Boolean ring.

$$\therefore \forall \in a \ R \to a = a.1$$

$$= a.(a.a^{-1})$$

$$= (a.a)a^{-1}$$

$$= a^2 . a^{-1}$$

$$= a.a^{-1} = 1$$

$$\therefore R = \{0, 1\}$$

$$\Rightarrow R$$

$$\cong Z_2$$

$$R$$
But I maximal \Leftrightarrow field
$$I$$

$$R$$
I maximal \Leftrightarrow Boolean ring
$$I$$

$$R$$
I maximal $\Leftrightarrow \cong Z_2$

$$I$$

Theorem: Every Boolean ring R is semi simple

Proof:

Let R be a Boolean ring

: R has identity element. Why?? and a² $= a \forall a \in \mathbb{R}.$ T. P. R is a semi simple ring T. P. ∴ ∃ homomorphism from R to Z₂ $\exists f(a) = 1$ $:: Ker^{(f)} ideal$ (proper) in R ÷Ξ maximal ideal M in $R \ni$ $Ker(f) \subseteq M$ But $1 - a \in Ker(f)$ $\therefore 1 - a \in M (Ker(f) \subseteq$ M) Since $a \in M$ (because $a \in Rad(R)$) Rad (R) = \bigcap { Maximal ideal} $\rightarrow 1 - a + a \in M$ $\rightarrow 1 \in M \rightarrow M = R$ C! Because M Maximal in R $\therefore \operatorname{Rad}(R) = \{0\}$ R semi simple ring

Definition: We define Boolean algebra is a Mathematical system (B, V, Λ) such that V, Λ two binary operation on B and $B \neq \emptyset$ and satisfy the following

LECTURE 12

- V , \land commutative on B. i.e.: $a \land b = b \land a$, $a \lor b = b \lor a \forall a, b \in B$.
- \forall , \land distributive with them ; others ; $a\land(b\lor c) = (a\land b)\lor(a\land c)$ $a\lor(b\land c) = (a\lor b)\land(a\lor c)$
- $\exists 1, 0$ identity elements with $\forall , \land \exists a \lor 0 = a \& a$ $\land 1 = a \lor a \in B$ B For each element a $\in B \exists a' \in B$ $\exists a \lor a' = 1 \& a \land a' = 0$ (a' is called complement of a)

Example: $(P(X), \cup, \cap), x \neq 0$ is a Boolean algebra. $0 = \emptyset, 1 = x$

Example: Let B be a set of Positive integer numbers which

represent divisors of $10 \text{ B} = \{1, 2, 5, 10\}$

We

define

V,Λ

on B by:

∀ a,b∈ B

 \rightarrow

g.c.d (a, b) = a Λ b

L.c.m (a, b) = a V b . Then (B, V, Λ) is a Boolean algebra

V	1	2	5	10
1	1	2	5	10
2	2	2	10	10
5	5	10	5	10
10	10	10	10	10

٨	1	2	5	10
1	1	1	1	1
2	1	2	1	2
5	1	1	5	5
10	1	2	5	10

identity

element of

V is 1

identity

element of

∧ is 10

1' = 10, 2' = 5, 5' = 2, 10' = 1